翻訳と辞書
Words near each other
・ Polyedriopsis
・ Polyeidos
・ Polyeidos (poet)
・ Polyelasmoceratidae
・ Polyelectrolyte
・ Polyelectrolyte adsorption
・ Polyeleos
・ Polyembryoma
・ Polyembryony
・ Polyene
・ Polyene antimycotic
・ Polyenoic fatty acid isomerase
・ Polyenso
・ Polyergus
・ Polycomb-group proteins
Polyconic projection
・ Polyconvex function
・ Polycopidae
・ Polycoria
・ Polycornum
・ Polycotylidae
・ Polycotylus
・ Polycount
・ Polycracy
・ Polycrase
・ Polycrasta
・ Polycrates
・ Polycrates (disambiguation)
・ Polycrates (sophist)
・ Polycrates complex


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Polyconic projection : ウィキペディア英語版
Polyconic projection

Polyconic can refer either to a class of map projections or to a specific projection known less ambiguously as the American Polyconic. Polyconic as a class refers to those projections whose parallels are all non-concentric circular arcs, except for a straight equator, and the centers of these circles lie along a central axis. This description applies to projections in equatorial aspect.〔''An Album of Map Projections'' (US Geological Survey Professional Paper 1453), John P. Snyder & Philip M. Voxland, 1989, p. 4.〕
As a specific projection, the American Polyconic is conceptualized as "rolling" a cone tangent to the Earth at all parallels of latitude, instead of a single cone as in a normal conic projection. Each parallel is a circular arc of true scale. The scale is also true on the central meridian of the projection. The projection was in common use by many map-making agencies of the United States from the time of its proposal by Ferdinand Rudolph Hassler in 1825 until the middle of the 20th century.〔''Flattening the Earth: Two Thousand Years of Map Projections'', John P. Snyder, 1993, pp. 117-122, ISBN 0-226-76747-7.〕
The projection is defined by:
:x = \cot(\varphi) \sin((\lambda - \lambda_0)\sin(\varphi))\,
:y = \varphi-\varphi_0 + \cot(\varphi) (1 - \cos((\lambda - \lambda_0)\sin(\varphi)))\,
where \lambda is the longitude of the point to be projected; \varphi is the latitude of the point to be projected; \lambda_0 is the longitude of the central meridian, and \varphi_0 is the latitude chosen to be the origin at \lambda_0. To avoid division by zero, the formulas above are extended so that if \varphi = 0 then x = \lambda - \lambda_0 and y = 0.
==See also==

* List of map projections

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Polyconic projection」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.